Wednesday, April 1, 2009

Reversing Tooth Decay

In the last post, I discussed the research of Drs. Edward and May Mellanby on the nutritional factors affecting tooth formation. Dr. Mellanby is the man who discovered vitamin D and identified the cause of rickets. Nutrition has a profound effect on tooth structure, and well-formed teeth are inherently resistant to decay. But is there anything you can do if your teeth are already formed?

Teeth are able to heal themselves. That's how traditional cultures such as the Inuit can wear their teeth down to the pulp due to chewing leather and sand-covered dried fish, yet still have an exceptionally low rate of tooth decay. It's also how the African Wakamba tribe can file their front teeth into sharp points without causing decay. Both cultures lost their resistance to tooth decay after adopting nutrient-poor Western foods such as white flour and sugar.

Teeth are made of four layers.
Enamel is the hardest, most mineralized outer shell. Dentin is another protective mineralized layer that's below the enamel. Below the dentin is the pulp, which contains blood vessels and nerves. The roots are coated with cementum, another mineralized tissue.

When enamel is poorly formed and the diet isn't adequate, enamel dissolves and decay sets in. Tooth decay is an opportunistic infection that takes advantage of poorly built or maintained teeth. If the diet remains inadequate, the tooth has to be filled or removed, or the person risks more serious complications.

Fortunately, a decaying or broken tooth has the ability to heal itself. Pulp contains cells called odontoblasts, which form new dentin if the diet is good. Here's what Dr. Edward Mellanby had to say about his wife's research on the subject. This is taken from Nutrition and Disease:

Since the days of John Hunter it has been known that when the enamel and dentine are injured by attrition or caries, teeth do not remain passive but respond to the injury by producing a reaction of the odontoblasts in the dental pulp in an area generally corresponding to the damaged tissue and resulting in a laying down of what is known as secondary dentine. In 1922 M. Mellanby proceeded to investigate this phenomenon under varying nutritional conditions and found that she could control the secondary dentine laid down in the teeth of animals as a reaction to attrition both in quality and quantity, independently of the original structure of the tooth. Thus, when a diet of high calci­fying qualities, ie., one rich in vitamin D, calcium and phosphorus was given to the dogs during the period of attrition, the new secondary dentine laid down was abundant and well formed whether the original structure of the teeth was good or bad. On the other hand, a diet rich in cereals and poor in vitamin D resulted in the production of secondary dentine either small in amount or poorly calcified, and this happened even if the primary dentine was well formed.
Thus, in dogs, the factors that affect tooth healing are the same factors that affect tooth development:
  1. The mineral content of the diet, particularly calcium and phosphorus
  2. The fat-soluble vitamin content of the diet, chiefly vitamin D
  3. The availability of minerals for absorption, determined largely by the diet's phytic acid content (prevents mineral absorption)
What about humans? Drs. Mellanby set out to see if they could use their dietary principles to cure tooth decay that was already established. They divided 62 children with cavities into three different diet groups for 6 months. Group 1 ate their normal diet plus oatmeal (rich in phytic acid). Group 2 ate their normal diet plus vitamin D. Group 3 ate a grain-free diet and took vitamin D.

In group 1, oatmeal prevented healing and encouraged new cavities, presumably due to its ability to prevent mineral absorption. In group 2, simply adding vitamin D to the diet caused most cavities to heal and fewer to form. The most striking effect was in group 3, the group eating a grain-free diet plus vitamin D, in which nearly all cavities healed and very few new cavities developed. Grains are the main source of phytic acid in the modern diet, although we can't rule out the possibility that grains were promoting tooth decay through another mechanism as well.

Dr. Mellanby was quick to point out that diet 3 contained some carbohydrate (~45% reduction) and was not low in sugar: "Although [diet 3] contained no bread, porridge or other cereals, it included a moderate amount of carbohydrates, for plenty of milk, jam, sugar, potatoes and vegetables were eaten by this group of children." This study was published in the British Medical Journal (1) and
the British Dental journal. Here's Dr. Edward Mellanby again:
The hardening of carious areas that takes place in the teeth of children fed on diets of high calcifying value indicates the arrest of the active process and may result in “healing” of the infected area. As might be surmised, this phenomenon is accompanied by a laying down of a thick barrier of well-formed secondary denture... Summing up these results it will be clear that the clinical deductions made on the basis of the animal experiments have been justified, and that it is now known how to diminish the spread of caries and even to stop the active carious process in many affected teeth.
Dr. Mellanby first began publishing studies showing the reversal of cavities in humans in 1924. Why has such a major medical finding, published in high-impact peer-reviewed journals, faded into obscurity?

Dr. Weston Price also had success curing tooth decay using a similar diet. He fed underprivileged children one very nutritious meal a day and monitored their dental health. From Nutrition and Physical Degeneration (p. 290):
About four ounces of tomato juice or orange juice and a teaspoonful of a mixture of equal parts of a very high vitamin natural cod liver oil and an especially high vitamin butter was given at the beginning of the meal. They then received a bowl containing approximately a pint of a very rich vegetable and meat stew, made largely from bone marrow and fine cuts of tender meat: the meat was usually broiled separately to retain its juice and then chopped very fine and added to the bone marrow meat soup which always contained finely chopped vegetables and plenty of very yellow carrots; for the next course they had cooked fruit, with very little sweetening, and rolls made from freshly ground whole wheat, which were spread with the high-vitamin butter. The wheat for the rolls was ground fresh every day in a motor driven coffee mill. Each child was also given two glasses of fresh whole milk. The menu was varied from day to day by substituting for the meat stew, fish chowder or organs of animals.
Dr. Price provides before and after X-rays showing re-calcification of cavity-ridden teeth on this program. His intervention was not exactly the same as Drs. Mellanby, but it was similar in many ways. Both diets were high in minerals, rich in fat-soluble vitamins (including D), and low in phytic acid.

Price's diet was not grain-free, but used rolls made from freshly ground whole wheat. Freshly ground whole wheat has a high phytase (the enzyme that degrades phytic acid) activity, thus in conjunction with the long yeast rises common in Price's time, it would have broken down nearly all of its own phytic acid. This would have made it a source of minerals rather than a sink for them. He also used high-vitamin pastured butter in conjunction with cod liver oil. We now know that the vitamin K2 in pastured butter is important for bone and tooth development and maintenance. This was something that Dr. Mellanby did not understand at the time, but modern science has corroborated Price's finding that K2 is synergistic with vitamin D in promoting skeletal and dental health.

If I were to design the ultimate dietary program to heal cavities that incorporates the successes of both doctors, it would look something like this:
  • Rich in animal foods, particularly full-fat pastured dairy products (if tolerated). Also meat, organs, fish, bone broths and eggs.
  • Fermented grains only; no unfermented grains such as oatmeal, breakfast cereal, crackers, etc. No breads except true sourdough (ingredients should not list lactic acid). Or even better, no grains at all.
  • Limited nuts; beans in moderation, only if they're soaked overnight or longer in warm water (due to the phytic acid).
  • Starchy vegetables such as potatoes and sweet potatoes.
  • A limited quantity of fruit (one piece per day or less), but no refined sweets.
  • Cooked and raw vegetables.
  • Sunlight, high-vitamin cod liver oil or vitamin D3 supplements.
  • A generous amount of pastured butter.
  • No industrially processed food.
This diet would maximize mineral absorption while providing abundant fat-soluble vitamins. It probably isn't necessary to follow it strictly. For example, if you eat more mineral-rich foods such as dairy and bone broths, you can probably get away with more phytic acid. Or you might be able to heal cavities eating like this for only one or two meals a day, as Dr. Price demonstrated.

0 comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...