Wednesday, April 28, 2010

Grains as Food: an Update

Improperly Prepared Grain Fiber can be Harmful

Last year, I published a post on the Diet and Reinfarction trial (DART), a controlled trial that increased grain fiber intake using whole wheat bread and wheat bran supplements, and reported long-term health outcomes in people who had previously suffered a heart attack (1). The initial paper found a trend toward increased heart attacks and deaths in the grain fiber-supplemented group at two years, which was not statistically significant.

What I didn't know at the time is that a follow-up study has been published. After mathematically "adjusting" for preexisting conditions and medication use, the result reached statistical significance: people who increased their grain fiber intake had more heart attacks than people who didn't during the two years of the controlled trial. Overall mortality was higher as well, but that didn't reach statistical significance. You have to get past the abstract of the paper to realize this, but fortunately it's free access (2).

Here's a description of what not to eat if you're a Westerner with established heart disease:

Those randomised to fibre advice were encouraged to eat at least six slices of wholemeal bread per day, or an equivalent amount of cereal fibre from a mixture of wholemeal bread, high-fibre breakfast cereals and wheat bran.
Characteristics of Grain Fiber

The term 'fiber' can refer to many different things. Dietary fiber is simply defined as an edible substance that doesn't get digested by the human body. It doesn't even necessarily come from plants. If you eat a shrimp with the shell on, and the shell comes out the other end (which it will), it was fiber.

Grain fiber is a particular class of dietary fiber that has specific characteristics. It's mostly cellulose (like wood; although some grains are rich in soluble fiber as well), and it contains a number of defensive substances and storage molecules that make it more difficult to eat. These may include phytic acid, protease inhibitors, amylase inhibitors, lectins, tannins, saponins, and goitrogens (3). Grain fiber is also a rich source of vitamins and minerals, although the minerals are mostly inaccessible due to grains' high phytic acid content (4, 5, 6).

Every plant food (and some animal foods) has its chemical defense strategy, and grains are no different*. It's just that grains are particularly good at it, and also happen to be one of our staple foods in the modern world. If you don't think grains are naturally inedible for humans, try eating a heaping bowl full of dry, raw whole wheat berries.

Human Ingenuity to the Rescue

Humans are clever creatures, and we've found ways to use grains as a food source, despite not being naturally adapted to eating them**. The most important is our ability to cook. Cooking deactivates many of the harmful substances found in grains and other plant foods. However, some are not deactivated by cooking. These require other strategies to remove or deactivate.

Healthy grain-based cultures don't prepare their grains haphazardly. Throughout the world, using a number of different grains, many have arrived at similar strategies for making grains edible and nutritious. The most common approach involves most or all of these steps:
  • Soaking
  • Grinding
  • Removing 50-75% of the bran
  • Sour fermentation
  • Cooking
But wait, didn't all healthy traditional cultures eat whole grains? The idea might make us feel warm and fuzzy inside, but it doesn't quite hit the mark. A recent conversation with Ramiel Nagel, author of the book Cure Tooth Decay, disabused me of that notion. He pointed out that in my favorite resource on grain preparation in traditional societies, the Food and Agriculture Organization publication Fermented Cereals: a Global Perspective, many of the recipes call for removing a portion of the bran (7). Some of these recipes probably haven't changed in thousands of years. It's my impression that some traditional cultures eat whole grains, while others eat them partially de-branned.

In the next post, I'll explain why these processing steps greatly improve the nutritional value of grains, and I'll describe recipes from around the world to illustrate the point.


* Including tubers. For example, sweet potatoes contain goitrogens, oxalic acid, and protease inhibitors. Potatoes contain toxic glycoalkaloids. Taro contains oxalic acid and protease inhibitors. Cassava contains highly toxic cyanogens. Some of these substances are deactivated by cooking, others are not. Each food has an associated preparation method that minimizes its toxic qualities. Potatoes are peeled, removing the majority of the glycoalkaloids. Cassava is grated and dried or fermented to inactivate cyanogens. Some cultures ferment taro.

** As opposed to mice, for example, which can survive on raw whole grains.

0 comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...